人工智能专家的困惑: 机器如何思考? 虽然人工智能专家是机器的“启蒙老师”,虽然在老师的指导下表现优秀的机器模型可以应用于诸多行业,但是对于机器到底是如何学会老师的指令、又是如何进行思考的,老师们其实并不清楚。 “从技术的角度看,目前人类并不能清楚地理解人工智能算法模型的方方面面,也没法准确回答机器到底是怎样思考的疑问,这正是人工智能专家们最大的困惑。”彭垚说。 以人工智能辅助医生看X射线图为例,在训练伊始,为了对阻塞动脉的特征进行识别和分类,机器首先会对医疗成像系统生成的一百万次X射线图像进行分析,生成第一版算法模型。而后,当添加新的X射线图像时,机器就开始在第一版算法模型的基础上自动分类并进行不断优化。 对于机器到底是按照什么逻辑分类、优化的,目前人工智能专家很难说清楚。“人工智能深度学习神经网络的内部工作机理非常复杂,即便搞懂了每一个算法的运行逻辑,当海量算法组合在一起时,就很难知道他们之间又产生了什么‘化学反应’。”彭垚说。 为了让机器能够沿着正确的方向思考,人工智能专家也肩负着重要使命。彭垚说,机器学习会根据输入的信息来理解世界。算法的一个基本原则:输出对应输入。这就要求人工智能专家在标识环节一定要做好质量把关。 譬如,对于用来给机器作为“学习资料”的X射线图像,如果人工智能专家标记不正确或者把图像质量很差的X射线图像交给机器学习,那么最后生成的人工智能算法模型很可能没法准确的判断对应疾病。 同样的误判也会出现在关于人的评判上。譬如,通过人工智能技术预测犯罪嫌疑人再次犯罪的可能性,如果提供给机器学习的“学习资料”是基于种族性的。那么,最后机器判断的结果很有可能也会有种族偏见。 |